Enrollment No:-____

Exam Seat No:-____

C.U.SHAH UNIVERSITY

Summer-2015

Subject Name: Thermodynamics

Subject Code: 4TE03TDY1 Course Name: B.Tech (Mech) Semester:III

Date: 7/5/2015 Marks: 70 Time:02:30 TO 05:30

Instructions:

- 1) Attempt all Questions of both sections in same answer book/Supplementary.
- 2) Use of Programmable calculator & any other electronic instrument prohibited.
- 3) Instructions written on main answer book are strictly to be obeyed.
- 4) Draw neat diagrams & figures (if necessary) at right places.
- 5) Assume suitable & perfect data if needed.

SECTION – I

Q – 1	a b c d	Distinguish between homogeneous and heterogeneous system. Explain perpetual motion machine of the first kind – PPM 1. Write the steady flow energy equation for thermally insulated nozzle. Write the statement of Zeroth law of thermo dynamics.	02 02 02 01
Q – 2	a b	Explain quasi-static system with p-V diagram. Water enters in a boiler at specific enthalpy of 400 kJ/kg and boiler and boiler is produced steam with specific enthalpy 2790 kJ/kg. Heat added by burning of fuel is 2500 kJ/kg. The entry point is 5m below the exit point. Assume the KE= 0. Calculate the heat loss from boiler through radiation to the	05 05
	c	Prove that entropy is a property of a system.	04

OR

Q-2	a b	Explain triple point with diagram in detail A reversible heat engine operates between high and low temperature limit of 1200 and 300 K respectively. The whole output utilized to operates a heat pump from heat engine. The pump operates on reversed Carnot cycle and extracts heat from a reservoir at 250 K and delivers it to the reservoir at 300 K. If 140 kJ/s of net heat is supplied to the reservoir at 300 K, calculate the heat supplied by the reservoir at 1400 K.	05 05
	с	Explain Point function and Path function.	04
Q -3	а	State and prove the Clausius theorem.	05

- b Write the limitation of the first law of thermodynamics with example. 05
- c Derive COP for reversed heat engine or Carnot heat pump.

Page 1 of 2

04

OR

Q -3	a b c	Prove the equivalence of Clausius and Kelvin statements. Prove that all reversible engines working between the two constant temperature reservoirs have the same efficiency. State and explain third law of thermodynamics.	05 05 04
		SECTION – II	
O-4	а	Why is the Carnot cycle not practicable for steam power plant?	02
τ.	b	State the function of Orsat apparatus.	02
	c	Define Dead State.	02
	d	What is air- fuel ratio?	01
Q – 5	a	State and explain Gibbs-Dalton law.	05
-	b	Explain Construction and working of Bomb calorimeter with neat sketch.	05
	с	In an Otto cycle the temperature at the beginning and end of the isentropic compression are 423 K and 690 K respectively. Determine the air standard efficiency and compression ratio.	04
		OR	

Q – 5	a	Write a short note on Van der Waal's equation.	05
	b	Define the following (i) Enthalpy of Formation (ii) Enthalpy of reaction	05
	c	A fuel has the following composition by mass:	04
		Carbon= 85%, Hydrogen= 12.75% and Oxygen= 22.5%. Determine the stoichiometric air required per kg of fuel and the mass of products of combustion per kg of fuel.	

Q -6	a	Explain adiabatic mixing of perfect gases.	05
	b	Derive an expression for irreversibility of closed system.	05
	c	Explain why it is said that Entropy of the Universe is constantly increasing? Justify.	04

OR

Q -6	а	Explain the Rankine cycle on P-V and T-S diagram.	05
	b	Write comparison of first and second law of thermodynamics.	05
	с	Explain and write different equation of effectiveness or second law of efficiency.	04

